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Abstract

Forced oscillations of the fluid surface in a cylindrical tank due to interaction with the excitation mechanism of a limited

power supply (so-called ‘‘limited excitation’’ phenomena) are investigated in detail. On the basis of analysis of the largest

Lyapunov exponents for a complex system—a tank with fluid and an excitation arrangement—the three types of steady-

state regimes are found: equilibrium positions, periodic and chaotic regimes. Phase portraits, Poincaré sections and maps,

distributions of spectral densities and invariant measures are constructed and thoroughly studied. Attention is

concentrated mainly on the properties of chaotic attractors and schemes of transition from ‘‘order’’ to chaos. It is

established that different scenarios of transition to chaos and various structures of chaotic attractors are possible in the

same physical system. The new scenario transition to chaos which generalizes scenario of Pomeau–Manneville is revealed.

It is shown that chaotic regimes with the single-mode fluid free surface oscillations can originate only due to interaction

with the excitation mechanism.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Possible modes of fluid free surface oscillations in a rigid container have been studied intensively
from different points of view. The revolution in our understanding of the physics of the phenomenon brought
about by the discovery of chaotic types of motion in deterministic systems has forced reevaluation of
previous results, in particular, the details of chaotic types of motion in certain physical systems. In addition,
the discovery of chaos has changed the methodology used to study these problems; it has broken down
earlier stereotypes, and has led to the rejection of certain unfounded assumptions, such as the method of
reduction, which states that the behavior of a complicated system can be determined by the properties of its
component sub-systems. The new point of view is that the dynamics of a complicated system depends very
much on the coupling between the sub-systems. For example, in cases where certain normal modes of
vibration of a distributed system are coupled and have the same frequency, regular steady-state vibrations
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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of any of the modes will ‘‘deteriorate’’ into chaotic motion because of the nonlinear interaction between
them [1–5].

Another example of such coupling is the interaction of a vibrating system with an excitation mechanism.
This interaction always exists because of the law of conservation of energy. When the vibrating system
possesses damping (actually damping is present in all real systems), the dissipation of the energy could
introduce essential corrections into the regimes of mechanism functioning. In this way, the vibrating
system influences the parameters of the excitation force. This influence is considered significant when the
power of the excitation mechanism is comparable to the power dissipated in the vibrating system. In this case
the vibrating system has a limited (non-ideal) excitation and the mechanism has a limited power supply (or is
non-ideal energy source), as was stated by Kononenko [6]. This situation is considered in the present study.
The limited non-ideal excitation phenomena was first studied by Sommerfeld [7] and Timoshenko [8]. In these
studies attention was focused on the changes of electric motor working regime, and not on the vibrating
system. As shown by Kononenko [6], for a linear oscillator with limited excitation the characteristics
of a nonlinear oscillator arise, such as the occurrence of instability regions. In view of this, in the present
study, the existence of new possible characteristics is investigated for forced resonant oscillations of the fluid in
tanks, which result from the interaction of the vibrating system with the energy source—the electromotor
(electric motor).
2. Formulation of the problem

Suppose that the electric motor D is connected by a crank connecting-rod mechanism with a rigid
cylindrical tank partly filled with a fluid (Fig. 1). The rotation of the electric motor shaft is described by the
law of the change of angle YðtÞ. When the crank a turns by the angle Y, the tank is displaced in the space
uðtÞ ¼ a cosYðtÞ, which contains components along the axes O�z� and O�y� of the absolute coordinate system.
These components are equal to uz ¼ a cosY�0 cosYðtÞ and ux ¼ a sinY�0 cosYðtÞ, respectively, where Y

�
0 is the

three-dimensional angle formed by the plane of tank platform and the horizontal plane y�O�z�. The axis of the
electric motor shaft is assumed to be parallel to the axis O�y�. For the description of the fluid free surface
vibrations in the tank, we introduce the cylindrical coordinate system Oxry, with origin on the undisturbed
O
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Fig. 1. Scheme of the system.
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surface of the fluid. Then the equation of the fluid free surface may be written in the form

x ¼ Zðr; y; tÞ. (1)

Assuming that the fluid in the tank is inviscid and incompressible, and the induced motion is irrotational, the
velocity field can be presented using velocity potential jðZ; r; y; tÞ, for which the mathematical boundary
problem can be formulated in the form [1,2,9,10]:

r2j ¼ 0 ð�hoxoZ; r; y 2 SÞ,

qj
qr

����
r¼0

o1;
qj
qr

����
r¼R

¼ 0;
qj
qx

����
x¼�h

¼ 0,

qj
qx
�rZrj ¼

qZ
qt

����
x¼Z

. (2)

Eq. (2) and boundary conditions can be obtained from the requirement of constancy of the integral over the
volume Q and the cross-sectional surface S of the fluid

SI1 ¼
1

2

Z Z
Q

Z
ðrj2ÞdS dx�

Z
S

Z
ðjÞjx¼Z

qZ
qt

dS (3)

under variations dj (Hamilton’s principal). Then solutions of the problem Zðr; y; tÞ and jðx; r; y; tÞ can be
written as series of eigenmodes [1,11]

Zðr; y; tÞ ¼
X

i j

Zc
i jðtÞ

Ji

mi jr

R

� �
Ni j

cos iyþ Zs
i jðtÞ

Ji

mi jr

R

� �
Ni j

sin iy

2
64

3
75,

jðx; r; y; tÞ ¼
X

i j

½jc
i jðtÞX i jðx; rÞ cos iyþ js

i jðtÞX i jðx; rÞ sin iy�, (4)

where Zc
ijðtÞ, Zs

ijðtÞ and jc
ijðtÞ, js

ijðtÞ are unknown amplitudes of eigenmodes; Jiðmi jr=RÞN�1i j cos iy,
Jiðmi jr=RÞN�1i j sin iy, X i j cos iy, X i j sin iy are members of the complete set of orthogonal eigenfunctions.

X i jðx; rÞ ¼ sech
mi j

R
h

� �
ch

mi j

R
ðhþ xÞ

h i Ji

mi j

R
r

� �
Ni j

,

N2
i j ¼

1

2
ð1þ d0iÞ 1�

i

mi j

 !2
2
4

3
5Jiðmi jÞ; i ¼ 0; 1; 2; . . . ; j ¼ 1; 2; 3; . . . . (5)

Here Jið:Þ are Bessel functions; mi j are eigenvalues determined by J 0iðmi jÞ ¼ 0; di j is the Kronecker delta.
We follow the notation of Miles [1,11], according to which the Lagrangian L could be written constructing

kinetic and potential energies in the form [5,9,10] (here and in the following the summation is carried out for
values with identical indices):

L ¼
1

2
I _Y

2
þ

1

2
m0a

2 _Y
2
sinYðtÞ þ

1

2
rS
X

ac;s
ijmn _Z

c;s
ij _Z

c;s
mn �

1

2
rS
X
½ðgþ €uxÞZ

c;s
ij Z

c;s
ij � €uzQ1jZ

c
1j�, (6)

where I is the moment of inertia of the electric motor shaft [6], m0 is the mass of the tank filled with fluid, r is
the density of the fluid, S is the cross-sectional area of the circular cylindrical tank, ac;s

ijmn ¼ ac;s
ijmnðZ

c;s
ij ; Z

c;s
mnÞ are

nonlinear functions of the unknown variables Zc;s
ij (for more details see Refs. [1,11]), Q1j ¼ ð1=SN1jÞR R

r cos2 yJ1ðm1 jr=RÞrdrdy, g is the acceleration of gravity, €ux and €uz are the vertical and horizontal
acceleration, respectively, of the tank. The first two terms in Eq. (6) denote the kinetic energy of the electric
motor shaft and of the tank with fluid as a whole.

Since the power of the electric motor which excites three-dimensional vibrations of the tank is comparable
to the power dissipated in the fluid at vibrations with internal damping, so that the change of fluid vibratory
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regime has a feedback influence on the process of formation of the excitation force. For these reasons, the
rotation speed of the electric motor shaft _YðtÞ should not be considered as a prescribed value, as it depends not
only on the characteristics of the electric motor, but also on the vibration of the fluid [5].

Using expressions for accelerations €ux and €uz in L, we obtain

L ¼
1

2
I _Y

2
þ

1

2
m0a2 _Y

2
sin2 YðtÞ þ

rS

2

X
ac;s

ijmn _Z
c;s
ij _Z

c;s
mn þ arS cosY0ð _Y

2
cosYþ €Y sinYÞ

X
Q1jZ

c;s
1j

þ
rS

2
½a sinY0ð _Y

2
cosYþ €Y sinYÞ � g�

X
Zc;s

ij Z
c;s
ij . (7)

On the basis of Eq. (7) we can easily construct the equations of Lagrange for the generalized coordinates of the
electric motor, i.e., for the angle YðtÞ as

I €Y ¼ �m0a
2 sinY cosY�m0a

2 €Y sin2Yþ arS cosY0ðY2 sinY

� €Y cosYÞ
X

Q1jZ
c
1j � 2arS _Y cosY0 cosY

X
Q1j _Z

c
1j

þ arS sinY0ðY2 sinY� €Y cosYÞ
X

Zc;s
ij Z

c;s
ij � 4arSðsinY0Þ _Y cosY

�
X

Zc;s
ij Z

c;s
ij þ Lð _YÞ �Hð _YÞ. (8)

The last two summations on the right-hand side of Eq. (8) are the driving torque and the torque of resistive
forces of the electric motor [6]. The remaining terms on the right-hand side are torque of the reverse influence
forces of vibrations of the fluid-filled tank and of the fluid free surface. The Lagrange equation for the
unknown amplitudes Zc;s

ij of eigenmodes may also be obtained from Eq. (7). In this case the problem is reduced
to the analysis of infinite number of nonlinear mutually related equations relative to Zc;s

ij . This system has to be
completed with the equation of energy source (8).

In the following we assume Y�0 ¼ 0, which means that tank vibrations occur in the horizontal plane along
the axis O�z�. Moreover we assume that the angular speed of the electric motor shaft _YðtÞ in the stationary
regime is close to the eigenfrequency o11 of the vibrations of the free surface of the first antisymmetric modes
Zc
11ðtÞN

�1
11 J1ðk11rÞ cos y and Zs

11ðtÞN
�1
11 J1ðk11rÞ sin y, where k11 ¼ m11=R. We introduce a small positive

parameter

� ¼ ðaQ11k2
11Þ
ð1=3Þ. (9)

In this case the detuning of frequencies _Y and o1 will be taken as a small value, proportional to �2, in the form
[9,10]

_YðtÞ � o11 ¼
1
2�

2o11bðtÞ, (10)

where o11 ¼ ðgk11 tanh k11hÞ1=2, h is the depth of the fluid in the tank; b is tuning parameter which measures
the offset of frequency _Y and o11. The vibrations of the free surface are approximated by dominant forms of
vibrations [2] Zc

11ðtÞN
�1
11 J1ðk11rÞ cos y and Zs

11ðtÞN
�1
11 J1ðk11rÞ sin y as well as by secondary modes (Zc

21ðtÞN
�1
21 J2

ðm21r=RÞ cos 2y, Zs
21ðtÞN

�1
21 J2ðm21r=RÞ sin 2y and Zc

01ðtÞN
�1
01 J0ðm01r=RÞ), containing the harmonics cos 2y; sin 2y;

cos 0 � 1, as it was shown by Miles [1,2], that those modes have the biggest connection coefficients in
equations for the dominant mode vibrations. We define functions Zc;s

ij ðtÞ in the form

Zc
11 ¼ �l½p1ðtÞ cosYðtÞ þ q1ðtÞ sinYðtÞ�,

Zs
11 ¼ �l½p2ðtÞ cosYðtÞ þ q2ðtÞ sinYðtÞ� (11)

for dominant modes and

Zc;s
21 ¼ �l½A

c;s
21 ðtÞ cos 2YðtÞ þ Bc;s

21 ðtÞ sin 2YðtÞ þ Cc;s
21 ðtÞ�,

Zc
01 ¼ �l½A

c
01ðtÞ cos 2YðtÞ þ Bc

01ðtÞ sin 2YðtÞ þ Cc
01ðtÞ�, (12)

for secondary modes, where l ¼ k�111 tanhðk11hÞ,

t ¼ 1
2
�2YðtÞ (13)
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is slow time; and the variables p1ðtÞ; q1ðtÞ; p2ðtÞ; q2ðtÞ;A
c;s
21 ðtÞ;B

c;s
21 ðtÞ;C

c;s
21 ðtÞ, Ac

01ðtÞ;B
c
01ðtÞ;C

c
01ðtÞ are slowly

varying dimensionless amplitudes of the dominant and the secondary modes.
Upon introducing Eqs. (11) and (12) into Eq. (7) and averaging L over the fast time YðtÞ, an expression may

be obtained for the averaged Lagrangian hLi. After determination of Ac;s
21 ðtÞ;B

c;s
21 ðtÞ;C

c;s
21 ðtÞ, Ac

01ðtÞ;B
c
01ðtÞ;

Cc
01ðtÞ and their introducing into hLi we finally find in the first approximation

hLi ¼
1

2
I _Y

2
þ

1

4
m0a

2 _Y
2
þ

1

2
�4gl2rS

1

2

X dpn

dt
qn � pn

dqn

dt

� �"

þp1 þ
€Y
o2

1

q1 þ bðtÞE þ
1

2
AE2 þ

1

2
BM2

#
, (14)

where A;B—constant coefficients given in Miles work [1];

E ¼ E1 þ E2; En ¼
1
2
ðp2

n þ q2
nÞ; M ¼ p1q2 � p2q1; n ¼ 1; 2.

E and M are the energy and the angular momentum, respectively, of the vibrations of the fluid in the
fundamental modes.

Now we write the equations for pi and qi which follow from Eq. (14). We take into account the forces of
viscous damping �2d_Zc;s

ij [2,9–11]

dp1

dt
¼ ap1 � ðbþ AEÞq1 þ BMp2,

dq1

dt
¼ aq1 þ ðbþ AEÞp1 þ BMq2 þ 1,

dp2

dt
¼ ap2 � ðbþ AEÞq2 � BMp1,

dq2

dt
¼ aq2 þ ðbþ AEÞp2 � BMq1, (15)

where a ¼ �d=o11, d is the damping ratio, when 2pd is the logarithmic decrement which may be
obtained either by direct measurement of the decay of the dominant modes or through semiempirical
calculation [2].

In problems of an ideal excitation of vibrations of the fluid free surface (when the power of excitation
mechanism is infinite and the feedback of the vibrating system on this mechanism may be neglected) the
system of equations (15) would have been a four-parametric one. However, in the formulation of the problem
considered in this paper, when the excitation unit-electric motor is ‘‘sensitive’’ to the level of energy dissipation
by the vibrating system, we must consider bðtÞ Eq. (10) not as a constant coefficient, but as an additional
unknown. Since the value YðtÞ depends on vibrations of the liquid, the value of frequencies difference bðtÞ will
be determined by the whole history of interaction between the rotation of an electric motor shaft and the
vibrations of the fluid free surface. In order to close system (15) we need an equation for b. We proceed in the
following manner: we introduce a change of variables, as is usual in problems of limited excitation

_YðtÞ ¼ OðtÞ. (16)

Then from Eqs. (11) and (12) by averaging over the fast time YðtÞ we can write Eq. (8) in the following form
ðY�0 ¼ 0Þ:

dO
dt
¼ �4 M1ðOÞ � a1lO2q1 � a1l

dO
dt

p1

� �
þ �5 . . . . (17)

Here

�4M1ðOÞ ¼
FðOÞ �HðOÞ
I þ 0:5m0a2

; �3a1 ¼
aQ1rS

2I þm0a2
.
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In the slow time we have

dO
dt
¼ �2M2ðOÞ � �2mq1, (18)

when

�2M2ðOÞ ¼
2�2

o1
M1; m ¼ 2la1o1.

As we are interested in the steady-state response, the static characteristic of FðOÞ of the electric motor [6]
will be used. Accordingly, we assume �2M2ðOÞ ¼ �2ðN0 þN1OÞ;N0;N1 are constants.

Moreover, we transform Eq. (18) into equation for bðtÞ

db
dt
¼ N3 þN1b� m1q1, (19)

where

N3 ¼
2

o1
ðN0 þN1o1Þ; m1 ¼

2m
o1

.

Consequently, we conclude that the process of interaction between vibrations of the fluid free surface in
dominant resonant modes and the shaft rotation of the electric motor with limited power supply is described
by a system of five evolution equations [9,10]

dp1

dt
¼ a1p1 � ðbþ AEÞq1 þ BMp2,

dq1

dt
¼ a1q1 þ ðbþ AEÞp1 þ BMq2 þ 1,

dp2

dt
¼ a1p2 � ðbþ AEÞq2 � BMp1,

dq2

dt
¼ a1q2 þ ðbþ AEÞp2 � BMq1,

db
dt
¼ N3 þN1b� m1q1. (20)

In the following we analyze the steady solutions of the system of equations (20), which may represent
equilibrium states, periodic, almost-periodic and also chaotic solutions. In the five-dimensional phase-space
ðp1; q1; p2; q2; bÞ, these solutions correspond asymptotically to a point, a limit cycle, a limit torus, and a chaotic
attractor, respectively. The condition for the occurrence of a chaotic attractor is the combination of total
compression with local instability.

3. Steady-state trajectories

The system of equations (20) is nonlinear and analytical solutions are not found, numerical solutions were
obtained. In the space of parameters ða;A;B;N1;N3;m1Þ of the equations system (20) extensive numerical
experiments were carried out in order to find the regions of existence of chaotic solutions and to investigate the
transition from regular to chaotic regimes. The structural reorganization of phase portraits of the chaotic
attractors was also investigated. The main computational method of the numerical integration of Eqs. (20)
was a fifth-order Runge–Kuttas method with the correction of the variable computational interval according
to Dormand–Prince [12]. A local numerical error of Oð10�12Þ or less was ensured. The construction of
corresponding Poincaré cross-sections and maps of phase portraits for the steady-state solutions was carried
out by the method of Henon [13]. In the case of chaotic vibrations the number of points in those cross-sections
was about 104–105. The Lyapunov exponents were computed using Bennettin’s method [14,15]. At last, for
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construction of natural invariant measures, the technique of coding by nuances of black color [5] is applied. In
order to minimize the effect of transients, all the temporal realizations of the dynamic processes were analyzed
after a prolonged time interval. The system of equations (20) has six parameters ða;A;B;N1;N3;m1Þ which
together with the initial conditions determine its behavior in the steady regimes. We may remark, that some
from these parameters are multiparameters. We shall define the type of the given set of equations. With this
purpose we find a divergence D systems (20). It is obvious that the divergence of a system can be written in the
form:

D �
q

dp1

dt

� �
qp1

þ

q
dq1

dt

� �
qq1

þ

q
db
dt

� �
qb

þ

q
dp2

dt

� �
qp2

þ

q
dq2

dt

� �
qq2

¼ 4aþN1. (21)

Apparently from Eq. (21), the divergence of a system depends on viscous dampings coefficient a and
parameter N1 which characterize an angle of inclination static characteristics of the electromotor [6]. For real
physical systems these parameters are always negative ones. Hence, the set of Eqs. (20) is dissipative. It means
that any initial phase volume of the system aspires to zero at unlimited increase of time. That is, any initial
subset of figuring points which has the non-zero phase volume eventually concentrates on one or several
attractors, and these attractors have zero phase volume. As we shall see further, attractors in systems (20) can
be regular and chaotic.

Let us consider bifurcations happening in the system when some of its parameters are changing.
We assume that the tank is filled by a fluid up to the depth h43R, therefore, as shown in the
work [1]:

A ¼ 1:112; B ¼ �1:531. (22)

The parameter of damping a is considered to be the small one [2]:

a ¼ �0:1. (23)

Also we shall assume, that a requirement for preresonance interaction between the fluid free surface
oscillations and the electromotor are realized, that is N3o0. So, it is possible to accept that [6]

N3 ¼ �0:1; m1 ¼ 0:5. (24)

Initial conditions varied in a neighborhood of an origin of phase space coordinates of system (20). In
particular, the selected initial conditions correspond to zero initial vibration amplitudes on the first dominant
mode and to non-zero initial vibration amplitudes on a second dominant mode. For example

p1ð0Þ ¼ 0; q1ð0Þ ¼ 0; bð0Þ ¼ 0; p2ð0Þ ¼ 1; q2ð0Þ ¼ 1.

First, we shall consider parameter N1 as a bifurcation one. This parameter characterizes an angle of static
characteristic inclination of the excitation engine.

As is known, the basic practical criterion of existence of a chaotic attractor in the system is the presence of at
least one positive characteristic exponent in a spectrum of Lyapunov characteristic exponents. In Fig. 2
dependence of the maximum Lyapunov characteristic exponent l1 on value N1 is shown. As it can be seen,
intervals of parameter N1 values exist in which the value l1 is positive. Hence, in these intervals the dynamic
system (20) has chaotic attractors.

Let us consider in more detail transition from the regular attractors of system (20) to chaotic. As the carried
out numerical calculations have shown at �0:1oN1p� 0:05 stable equilibrium positions exist with
coordinates:

p1 ¼ const:; q1 ¼ const:; b ¼ const:; p2 ¼ q2 ¼ 0. (25)

Thus, all stable equilibrium positions in the vicinity of the origin of phase space coordinates O at
�0:1oN1p� 0:05 have zero coordinates of the second dominant mode. At N1 ¼ �0:1 this position of an
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equilibrium loses stability and a stable limit cycle with the zero second dominant mode originates in system
(20) as a result of Andronov–Hopf bifurcation. That is, the limit cycle with

p1 ¼ f 1ðtÞ; q1 ¼ f 2ðtÞ; b ¼ f 3ðtÞ; p2 ¼ 0; q2 ¼ 0,

where f 1ðtÞ; f 2ðtÞ; f 3ðtÞ are some periodic functions of t.
Starting at the value N1 ¼ �0:10153 there is a cascade of period-doubling bifurcations of limit cycles. In

Fig. 3 the first bifurcations of this cascade are shown. This infinite cascade of period-doubling bifurcations
comes to the end by origin of a chaotic attractor at N1 ¼ �0:101632. In Fig. 4 projections of the chaotic
attractor are given for N1 ¼ �0:10164. The projections shown in Fig. 4 correspond to chaotic oscillations only
by the first dominant mode. Transition to chaos here happens under Feigenbaum scenario [16,17]. We should
stress a very interesting feature that all bifurcations of the period-doubling cascade and the chaotic attractor
have the zero second dominant mode of oscillations. Moreover, the chaotic attractor has spiral structure.
Points on trajectories of the attractor unpredictable wander on coils of its spirals. In what follows, we shall
name such attractors as single-mode ones.

In Fig. 4(c) the Poincaré section by the plane b ¼ �1:55 is shown for the chaotic attractor at N1 ¼ �0:10164
and its Poincaré map on a variable q1. Section of Poincaré represents the chaotic point set having a ribbon
structure. Poincaré map can be exactly enough approximated by the one-dimensional curves. Thus, in this case
investigation of the dynamic system (20) can be reduced to study the one-dimensional discrete map.

Let us remark that the period-doubling bifurcations happen on a very small length interval of changing N1.
However, the interval of existence of a single-mode chaotic attractor is smaller. So, at N1 ¼ �0:10165 the
single-mode attractor disappears and in the system a chaotic attractor of another type appears. In Fig. 5
projections of the new chaotic attractor which arise in the system at N1 ¼ �0:10165 are given. First of all it
differs from the single-mode attractor by excitation of oscillations on the second dominant mode. We name
attractors of such type as double-mode ones. Besides, amplitudes of chaotic oscillations on the first dominant
mode increase noticeably. Because of that the volume of a phase space, in which trajectories of arisen chaotic
attractor are localized, increases. So, in Fig. 5 it is possible to notice a small densely blacked out area in the
vicinity of the point ð1; 0Þ. This blacked out area approximately corresponds to the area of localizations in the
phase space of the missed single-mode attractor.

In Fig. 5(d) the enlarged fragment of the projection of the chaotic attractor in the vicinity of the point ð1; 0Þ
is shown. A close study of this fragment allows to detect a noticeable likeness with the relevant projection of
the single-mode attractor (Fig. 4(a)). It makes clear the mechanism of an origin of the double-mode chaotic
attractor which is a result of an intermittency between the missed chaotic single-mode attractor and a saddle
limit cycle existing near by in the phase space. At N1 ¼ �0:10165 the single-mode attractor and a saddle cycle
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disappear and in system (20) a new chaotic attractor appears. Motion along this attractor has three phases:
laminar, turbulent and one, which we shall name as coarse grained laminar. Motion at the laminar phase
corresponds to motion along the trajectories closely located to the missed limit cycle (see, densely retraced
trajectories at the left above part in Fig. 5(a)). At unpredictable moments of time there is a turbulent splash
(the turbulent phase) and trajectories go away to the area of the missed single-mode chaotic attractor (densely
blacked out area in the vicinity of the point ð1; 0Þ in Fig. 5(d). Then during maybe long time trajectories make
chaotic wanderings along coils of the missed single-mode chaotic attractor. By analogy with the terminology
used in the statistical physics [5,18–20] we name this phase as coarse grained laminar. In fact Gibbs in his
classical textbook [18] introduced notion coarse grained density as the averaged characteristics in box (grains)
when he studied processes statistically by box counting approach and not by continuum approach from point
characteristics. Any process has the same characteristics in a box by coarse grained approach for all points. So
if we look at the missed single-mode chaotic attractor using averaging procedure as modelling it in some
boxes, then attractor may be presented as some limit cycle with one trajectory part in every box (not a lot of
trajectory coils in every box) and with some jumps in coordinates of trajectories from one box to another.
That is why we name motion along the missed single-mode chaotic attractor as coarse grained laminar phase
and after the coarse grained laminar phase, in an unpredictable instant, new turbulent splash happens
(the turbulent phase) and trajectories return in the area of the missed limit cycle. The described process iterates



ARTICLE IN PRESS

p1
0.5

q 1

q 1

q 1

-0.4

-0.2

0

0.2

0.4

p10.6
0.8

1 1.21.4
1.6

-2
-1.8

-1.6

-0.4

-0.2

0

0.2

0.4

p1
0.5

-0.2

0

0.2

0.4

q1,n
-0.2

q 1
,n
+1

-0.2

0

0.2

0.4

1 1.5

0.6 0.7 0.8 0.9 1 0 0.2 0.4

β

Fig. 4. Projections of a chaotic attractor at N1 ¼ �0:10164 (a,b), its Poincaré section (c) and map (d).
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an infinite number of times. Thus, such intermittency is distinct from the classical type considered by Pomeau
and Manneville [21–23], when there are only two phases in the intermittency: laminar and turbulent. We also
want to point out that the double-mode chaotic attractor has more than triple growth in the value of the
maximum Lyapunov characteristic exponent of system (20) from 0.023 up to 0.075.

In Fig. 6 projections of Poincaré section by a plane b ¼ �1:55 and Poincaré map (of one of variables) of the
double-mode chaotic attractor at N1 ¼ �0:10165 are given. Apparently the Poincaré section loses ribbon
structure which existed in the single-mode attractor and looks as some developed chaotic point set. However, a
close look at Fig. 6(a) allows to note that some constituent part of the double-mode chaotic attractor Poincaré
section has a ribbon structure of the missed single-mode attractor. The same rule is proper also in Poincaré
map of the double-mode attractor. The constituent part of this map is solid blacked ‘‘curves’’ which are as
‘‘memories’’ of the missed single-mode chaotic attractor. It is natural that for the double-mode chaotic
attractor there is no one-dimensional discrete approximation.

We must admit that origin of the single-mode chaotic attractors is only due to interaction of oscillatory
systems (fluid free surface) with the excitation engine–electric motor. At an unlimited power supply of the
electric motor appearance of the chaotic single-mode regimes in system (20) is impossible.

The double-mode chaotic attractors exist on the much larger segment of the parameter N1, namely
�0:373pN1p� 0:10165. This segment corresponds to the area, in which system (20) has the positive
maximum characteristic exponent, what is apparent from Fig. 2. However, in Fig. 2 number of touches of the
characteristic exponent graph to a zero value is precisely seen. Small intervals, in which the characteristic
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exponent is equal to zero, correspond to ‘‘windows of periodicity’’ in the field of chaos. In these windows there
are stable limit cycles in the system.

Let us consider the dynamics of system (20) at transition of one periodicity window. For example, at
N1 ¼ �0:271 there is a limit cycle in the system, whose projections of the phase portrait are shown in Fig. 7(a)
and (b). At N1 ¼ �0:269 the limit cycle disappears and as a result of the intermittency of the first type the
chaotic attractor appears. Projections of the phase portrait of two modes of oscillations of such attractor
constructed for N1 ¼ �0:268 are given in Fig. 7(c) and (d). In Fig. 8 projection of Poincaré section by the
plane b ¼ �1:35 and Poincaré map of the variable q1 are presented. In spite of the fact that the arisen chaotic
attractor is the double-mode one, projections of its Poincaré section have quasi-ribbon structure, more
appropriate for the single-mode chaotic attractors. As is apparent from Fig. 8(b), it is possible to approximate
the dynamics of the system by means of the discrete one-dimensional maps.

At increase in N1 from the value �0:268 the double-mode chaotic attractor appears. In Fig. 9(a) and (b)
two- and three-dimensional projections of the phase portrait of chaotic attractor at N1 ¼ �0:25 are shown.
Accordingly in Fig. 9(c) and (d) its Poincaré section and map are demonstrated. The considerable changes and
complicatedness of a phase portrait structure is obviously visible if we compare them to those which are for
the chaotic attractor at N1 ¼ �0:268. Projections of Poincaré section (Fig. 9(c)) completely lose quasi-ribbon
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map (d) of a chaotic attractor at N1 ¼ �0:25.

T.S. Krasnopolskaya, A.Yu. Shvets / Journal of Sound and Vibration 322 (2009) 532–553544



ARTICLE IN PRESS

N3

-1.5

-0.1

0

0.1

0.2

0.3

0.4

0.5

λ 1

-1 -0.5

Fig. 10. Dependence of the maximum Lyapunov exponent l1 on N3.

T.S. Krasnopolskaya, A.Yu. Shvets / Journal of Sound and Vibration 322 (2009) 532–553 545
structure and look as a chaotic point set. Any one-dimensional approximation of Poincaré map is impossible
(Fig. 9(d)) Developed chaotic attractors, as shown in Fig. 9, are the most typical for system (20). They exist at
the dominant majority of values N1 from a segment ½�0:373;�0:10165�.

Let us consider now bifurcations which happen in system (20), when the static characteristic of the
electromotor is changing by the value of N3 (multiparameter, which depends on the eigenfrequency of fluid
free surface and on characteristics the electromotor). We assume that N1 ¼ �1, and values A, B, a, m1 remain
the same, as in Eqs. (22)–(24). In Fig. 10 dependence of the maximum Lyapunov characteristic exponent l1 on
value N3 is shown. The graph in Fig. 10 displays that at �1:6oN3o� 0:394 there are some intervals in which
the exponent l1 is positive. Hence, in these intervals the system of equations (20) has chaotic attractors.
Apparently from Fig. 10, intervals in which there are chaotic attractors, alternate with narrow ‘‘windows’’ of
periodicity.

Let us study some features of transition to chaos at changing of the bifurcation parameter N3. So, at
N3 ¼ �0:38 in the system there is a stable limit cycle. At decreasing of values N3 an infinite cascade of
bifurcations of period-doubling starts and comes to an end by origin of a chaotic attractor at N3 � �0:395.
The arisen chaotic attractor exists in very small interval of N3 and it is replaced by a chaotic attractor of other
type already at N3 ¼ �0:39504 as a result of an intermittency. The newly arisen chaotic attractor exists in the
larger interval of N3, namely, �0:5oN3p� 0:39504. Such a situation reminds one of what was considered
earlier in the study of bifurcations on parameter N1 at the right threshold of existence of chaos. However, in
the latter case there is one essential difference: the limit cycles originating under Feigenbaum scenario a
chaotic attractor are not single-mode ones. They have oscillations by both dominant modes.

In Fig. 11(a) and (b) projections of phase portraits of chaotic attractors are constructed at N3 ¼ �0:39503
and �0:39504 accordingly. A chaotic attractor, shown in Fig. 11(b), differs from a chaotic attractor, given in
Fig. 11(a), by noticeable growth of vibration amplitudes on both dominant modes. It courses an essential
growth of an area in the phase space in which the arisen attractor is localized. In Fig. 11(c) and (d) the
projections of phase portraits of chaotic attractors in a larger scale are shown. As it is well seen from these
figures, the fragment of the projection of the chaotic attractor at N3 ¼ �0:39504 is qualitatively similar to the
chaotic attractor at N3 ¼ �0:39503. These graphs make clear the mechanism of an intermittency at origin of
one attractor from another. In the point of the bifurcation the chaotic attractor in Fig. 11(a) disappears and in
system (20) an attractor of new type appears, trajectory motion on which will consist of two phases. One of
them whom, as well as earlier, we shall name coarse grained laminar, represent chaotic wanderings along a
trajectory of the arisen attractor in neighborhoods of trajectories of the missed chaotic attractor. At an
unpredictable instant of time the trajectory ‘‘becomes broken’’ and a moving point goes away from the area of
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the missed chaotic attractor to far fields of the phase space. It is a turbulent phase of motion along the
trajectory. Then the trajectory again returns in the area of the missed attractor. This process iterates an infinite
number of times.

In Fig. 12(a) and (b) projections of distribution of an invariant measure in phase portraits are shown for the
chaotic attractors at N3 ¼ �0:39503 (Fig. 12(a)) and at N3 ¼ �0:39504 (Fig. 12(b)). In Fig. 12 densely blacked
out parts correspond to coarse grained laminar phase of an intermittency and more light to turbulent splashes.
From this figure it could be clearly seen that duration of the coarse grained laminar phase considerably
exceeds duration of the turbulent phase. Distribution of an invariant measure in the phase portrait of the
chaotic attractor in Fig. 12(a) is uniform enough, what is typical for chaotic attractors, arisen under
Feigenbaum scenario. The qualitative similarity between Fig. 12(a) and (b) here is well visible and indicates
that the vanishing chaotic attractor serves as a ‘‘foundation’’ for the coarse grained laminar phase of the
originating attractor.

In Fig. 12(c) and (d) Poincaré sections by the plane b ¼ �0:5 of these attractors are shown. Both Poincaré
sections are dot chaotic sets. One of the sections (Fig. 12(d)) as a fragment contains a set qualitatively similar
to the second section (Fig. 12(c)) that once again confirms the presence of the intermittency of new type
‘‘chaos–chaos’’ in the system. Thus, there is the intermittency which is distinct from classical
Pomeau–Manneville scenarios [21–23].
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Now we consider the behavior of the system when parameter N3 is passing through a window of periodicity
in more detail. For that we assume that N3 2 ½�0:828;�0:825�. A limit cycle is as an attractor of the system in
this window of periodicity. In Fig. 13(a) and (b) projections of a phase portrait and Poincaré section of the
cycle are constructed at N3 ¼ �0:825, accordingly. The structures of graphs are typical for limit cycles,
namely: a closure of a trajectory in a phase space and finiteness of points in Poincaré section. At small
increasing of N3 system (20) instead of the limit cycle has a chaotic attractor. Projections of a phase portrait
and distribution of Krylov–Bogolyubov invariant measure on a phase portrait of the new chaotic attractor,
constructed at N3 ¼ �0:824, are given in Fig. 13(c) and (d). The last figure is a good illustration of transition
history from the regular attractor to a chaotic one. An area densely retraced is practically coincident with the
missed limit cycle, as we can see in Fig. 13(d) clearly. It is a laminar phase of an intermittency ‘‘a limit
cycle–chaos’’. The lighter parts of the graph characterize a turbulent phase of this intermittency.

In Fig. 14 (a) and (b) projection of Poincaré section by the plane b ¼ �1:35 and Poincaré map of a chaotic
attractor at N3 ¼ �0:824 are given. Both represent developed chaotic point sets. The arisen chaotic attractor is
a double-mode one. Such type of attractors are the most typical for system (20). They exist for the majority of
values N3 of chaos field, found using analysis of Fig. 10. In particular, chaotic attractors of such type exist at
the left-hand boundary of the chaotic field in Fig. 10. At decreasing of N3 at this boundary ðN3 � �1:544505Þ
the chaotic attractor disappears and a position of an equilibrium with p1 ¼ const:, q1 ¼ const:, b ¼ const:,
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p2 ¼ q2 ¼ 0 establishes in the system. The characteristic for such position of an equilibrium is the equality to
zero of the second dominant mode variables. So, for N3 ¼ �1:544506 the position of an equilibrium has the
following coordinates:

p1 ¼ 0:84; q1 ¼ 0:07; b ¼ �1:58; p2 ¼ q2 ¼ 0. (26)

In conclusion we consider bifurcations of system (20) which happen at the changing of the parameter a
(coefficient of damping). We assume that N1 ¼ N3 ¼ �1, and values A, B, m1 are the same, as in Eqs. (22) and
(24). In Fig. 15 dependence of the maximum Lyapunov characteristic exponent l1 on the coefficient of
damping a is shown. In that figure intervals of a positiveness of the characteristic exponent are precisely
visible. In these intervals the system has chaotic attractors. As well as in the previous cases, intervals of a chaos
alternate with very small intervals, in which the maximum characteristic exponent is equal to zero. These are
windows of periodicity in chaos, in which attractors of system (20) are limit cycles.

There is a stable limit cycle at a ¼ �0:3115. At increase a, starting from a ¼ �0:311, the infinite cascade of
period-doubling bifurcations realizes which ends by origin of a chaotic attractor at a � �0:3109. A rule typical
enough for this problem is again observed: transition to chaos under the scenario Feigenbaum is implemented
in very small interval ð�0:311;�0:3109Þ. In Fig. 16(a)–(c) the first bifurcations of a period–doubling cascade
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are shown. And in Fig. 16(d) chaotic attractor projections that have arisen by the Feigenbaum scenario are
shown. Chaotic attractors of this type (Fig. 16(d)) have a ribbon structure of its Poincaré section.

The described scenario of transition to chaos iterates at passing a right boundary of a window of periodicity.
Everywhere the cascade of period-doubling bifurcations happen in very small interval changes of parameter.
As a result of bifurcations chaotic attractors appear which look as is shown in Fig. 16(d). Further on in all
intervals of a chaos the following regularity takes place. At moving a from the right boundary of a periodicity
window a chaotic attractor becomes more ‘‘developed’’. Its trajectories start to fill in all hollows which can be
seen in Fig. 17(a) and (b). At the same time Poincaré sections lose ribbon structure and look like chaotic point
sets, Fig. 17 as illustration serves. In this figure different characteristics of a chaotic attractor are given which
are constructed at a ¼ �0:15, which is approximately in the middle of this interval of chaos (see Fig. 15).

Let us notice that the structure of a phase portrait of a chaotic attractor on the last figure is the most typical
for chaotic attractors which exist in system (20). Practically always, attractors have a similar phase portrait at
chaos in a case when the bifurcation parameter is in some distance from periodicity window boundaries.
However, resembling of phase portraits does not entail resembling Poincaré sections and maps. Really, the
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chaotic attractor constructed at a ¼ �0:188 (as it is clear from Fig. 15 this value a, as well as a ¼ �0:15 is far
enough from periodicity window boundaries) has projections of phase portrait practically indistinguishable
from the relevant projections of a chaotic attractor at a ¼ �0:15. Therefore, we do not show these projections
here. For a visual image of a phase portrait of a chaotic attractor at a ¼ �0:188 it is enough to look at
Fig. 17(a) and (b). Poincaré sections (by the same intersecting plane b ¼ �1:55) and maps of attractors at
a ¼ �0:15 and �0:188 differ from each other very much. So, in Fig. 18(a) and (b) projections of Poincaré
section by the plane b ¼ �1:55 and map of the variable q2 (c) and (d) of the chaotic attractors are shown.
Comparison the relevant parts of Figs. 17 and 18 displays the considerable differences in structure of Poincaré
sections and maps of two considered chaotic attractors. Sections and maps represent developed chaotic sets
for both attractors. Approximation of such sets by the one-dimensional curves is impossible.

The carried out numerical calculations have shown that in the space of parameters of system (20) a three-
dimensional range of parameters N1;N3; a can be localized in which chaotic attractors are more typical
attractors of the investigated system than the regular attractors. Really, we mark as Pr a three-dimensional
parallelepiped in space of parameters of system (20) whose boundaries are determined by requirements:

�0:32oao0; �0:4oN1o� 0:1; �1:6oN3o� 0:35,
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A ¼ 1:112; B ¼ �1:531; m1 ¼ 0:5. (27)

Practically, for all values of parameters of system (20) which are inside Pr a unique possible attractor in the
vicinity of an origin of coordinates is the chaotic attractor.

Let us assume that the range of initial conditions is defined by the following relations:

jpijp2:5; jqijp2:5; jbjp2:5; i ¼ 1; 2. (28)

Satisfying in our numerical experiments requirements (27) and (28) it was possible to define a two-parameter
region Ca whose boundaries are approximately as follows:

�1:5N1 � 0:05pN3p� 0:475N1 þ 0:08; 0oN1p10. (29)

In limits of the region Ca small ‘‘islands’’ exist whose total area is much less than the area of Ca. In these
islands the only possible attractors of system (20) are regular ones. For all remaining values N1;N3 2 Ca

unique existing attractors of the dynamic system (20) are chaotic attractors of considered types. And the
single-mode attractors can exist only in very narrow bands located along boundary Ca. Transition from the
regular to chaotic motion happens under the earlier described scenarios, including the new ‘‘non-classical’’
scenario of intermittency.
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Returning to the real physical system: the tank with fluid free surface and the electric motor, we should
notice the following. We have shown that the chaotic regimes of resonant fluid forced oscillations are quite
different when the interaction with the excitation source is taken into account. The differences are mainly due
to the fact that interaction in most cases leads to a non-constant frequency b (‘‘detuning’’). b will be constant
(although not equal to the initial value of b0) only at the equilibrium positions of system (20). In other steady-
state regimes of interaction the value of b changes in some regions (since the speed _YðtÞ depends on fluid
vibrations and also changes in some interval of value). Moreover, these changes will be periodic or chaotic,
respectively, for periodic or chaotic regimes of system (20). Thus, for a certain initial value of the frequency
detuning b0 will eventually trace the whole interval of values of b. The changing of b does not allow a direct
comparison of the resonance curves under ideal (unlimited power supply) and non-ideal (limited power
supply) excitation. The frequency detuning in the case of non-ideal excitation will be a function of
b0; p1; q1; p2; q2 and t.

In summary, the observed steady-state solutions of system correspond to the following three main classes of
steady-state regimes of real physical ‘‘fluid-energy source’’ system: the first class includes regular regimes
which correspond to equilibrium positions of the system, when fluid vibrations in the resonance modes occur
with constant amplitude and frequency, and the electric motor shaft rotates with constant velocity. The second
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class includes regular regimes which correspond to limit cycles of system (20), and in which vibrations of the
dominant modes have periodically changing amplitude and frequency, the shaft rotates with the speed which
has periodically changing component. The third class corresponds to chaotic attractors of system (20) when
the amplitude and frequency of fluid vibrations and the electric motor velocity change chaotically in time. The
third class of regimes differs qualitatively from the other two and cannot be approximated by them.

4. Conclusion

As a result of investigating the nonlinear process of interaction between the resonant vibrations of a fluid
free surface in the cylindrical tank and the electric motor with limited power supply the following conclusions
can be drawn.

The existence of several types of chaotic attractors was established for the described system. It was shown
that the transition to chaotic motion may occur with different scenarios such as: a cascade of period-doubling
bifurcations, the intermittency by classical Pomeau–Manneville scenario and the intermittency of new type
‘‘chaos–chaos’’ which generalizes the previous one.

It was shown that the chaotic steady regimes are typical attractors for the described system. In the
parameters space, large regions were found where chaotic motions exist.

It was established for averaged systems that chaos could originate only from the process of interaction of a
directly excited resonance mode of vibrations with the electric motor during forced resonance, when a second
dominant mode was not excited altogether. One-mode chaotic regimes could not occur in the case of an ideal
excitation.
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